
2R), CXCR4 (figure 2S) CXCL12, CXCL13 (figure 4A),
CCR7 (figure e-1C), IL7, and IL23A (figure e-1D) were
significantly upregulated in B-cell–rich and follicle-like aDM
compared with classic aDM and jDM, with highest expression
of CCL19, CXCL12, CXCR4, and IL7 in follicle-like aDM.

Th1- and Th17-mediated immunity is
associated with B-cell aggregates in aDM
Previous studies brought attention to the role of different T-
cell subsets in ectopic lymphoneogenesis and germinal
center–like formation. Th1-mediated immunity in general is
known to be specifically involved in the immunopathogenesis
of DM. Of interest, cytokines linked to Th17 and Th1 im-
munity were significantly associated with B-cell aggregation
and ELS formation in our study. In fact, Th17-associated
cytokines IL7, IL12A, IL23A, and CCR622–24 were all sig-
nificantly upregulated in B-cell–rich and follicle-like aDM
(figure 1, C and D), with highest expression of IL7 and CCR6
in follicle-like aDM. This was further supported by strong
expression of Th1-specific CXCR325 (figure 2S), TNFA
(figure e-1G, links.lww.com/NXI/A40), and INF� (data not

shown) in follicle-like aDM, suggesting that ELS formation in
DM muscle tissue is strongly influenced by Th1 and Th17
lineages.

Morphologic and molecular analyses of B-cell
infiltration, maturation, and ELS formation
in DM
To further characterize ectopic lymphoid follicle–like struc-
tures, we performed additional immunohistological stains and
quantitative reverse-transcription PCR analysis of genes as-
sociated with lymphoid neogenesis and B-cell maturation.
The center of the lymphoid follicle–like structures, mainly
composed of CD20+ B cells (figure 3C), was surrounded by
a CD3+ T-cell–rich periphery (figure 3E). High endothelial
venules (HEVs; figure 3K) and D2-40+ follicular dendritic
cells (figure 3G) were only seen in follicle-like aDM, but not
in samples of other subgroups (data not shown). Cytokines
involved in lymphoid neogenesis such as CXCR5, CCL19,
CCL21, CXCL12, CXCL13, LTA, LTB, and TNFSF13B
were—with the exception of CXCR5 and LTA—highly
expressed in all DM subgroups in comparison with healthy

Figure 3 Morphologic and molecular analyses of B-cell infiltration and ELS formation in DM

Muscle sections were stained with CD20 to highlight the B-cell content in different DM subgroups (A–D, arrowheads). ELSs showed clear compartmentali-
zation of peripheral CD3+ T cells (E) and CD21+ (F) B cells. The germinal center–like structures consisted of D2-40+ follicular dendritic cells (FDCs) (G), CD23+ B
cells (H), MUM1+ B cells (J), and CD31+ HEVs (K) with PAX5+ B cellsmainly distributed around them (L). Increased proliferative activity in the B-cell–rich germinal
center–like area was indicated by Ki67/MIB1 immunostaining (M). Immunofluorescent labeling demonstrated partial colocalization of central CD20+ B cells
with POU2AF1 (BOB-1) (N). (I) mRNA expression of PAX5 and POU2AF1 measured by real-time RT-PCR. The reciprocal DCT values are displayed to illus-
trate levels of gene expression of PAX5 and POU2AF1, genes whose expressionwas not detectable in � 2 healthy controls. Results showmean ± SEM. *p < 0.05,
**p < 0.01. DM = dermatomyositis; ELS = ectopic lymphoid structure; mRNA = messenger RNA; RT-PCR = real-time PCR.
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controls (figure 2, R and S; figures e-1F andG, links.lww.com/
NXI/A40). However, highest expression of these molecules
was found in follicle-like aDM. Double immunofluorescence
staining suggested that not only follicular dendritic cells but
also CD23+ B cells seem to be a source of CXCL13 within
these ectopic lymphoid follicle–like structures (figure 4A,
arrowheads). We further investigated the differentiation state
of infiltrating B cells and the mRNA and protein expres-
sion of POU2AF1 (BOB1), IRF4 (MUM1), PAX5, and
PRDM1, genes/proteins involved in different functional or

maturational B-cell subsets, e.g., within the germinal
center.26–29 Specialized mature follicular CD21+ and CD23+

germinal center B cells (figure 3, F and H) were only detected
within ELSs of follicle-like aDM, but not in other DM sub-
groups (data not shown). POU2AF1, IRF4, PAX5, and
PRDM1 were highly upregulated in follicle-like aDM, slightly
less expressed in B-cell–rich aDM, and showed significantly
lower mRNA levels in classic aDM and jDM (figure 3I, figure
e-1E). In follicle-like aDM, many POU2AF1+ (BOB1+, figure
3N, figure e-1H, arrowheads), PAX5+ (figure 3L), and

Figure 4 Expression of type 1 IFN cytokines in different aDM subtypes

CD23+ B cells are a source of CXCL13 as indicated by double immunofluorescent staining (A, arrowheads). Gene expression of CXCL12 and CXCL13 was
illustrated by the log10 of fold change values compared with the normal controls. Results show mean ± SEM. *p < 0.05, **p < 0.01. (B) EM revealed
tubuloreticular inclusions (arrowheads) in the cytoplasm of a B-lymphocyte (solid and dashed boxes indicate magnified areas; * = mitochondrion). MxA
staining revealed strong expression in the perifascicular area on myofibers and capillaries (C, arrows) in all cases and additional expression by B cells in B-
cell–rich and follicle-like aDM (C, arrowheads). In contrast to healthy controls, muscle fibers of different DM subgroups showed upregulation of ISG20 (D;
CRTL: normal control). aDM = adult dermatomyositis; DM = dermatomyositis; IFN = interferon; IM = intramuscular; ISG = interferon-stimulated gene; MxA =
myxovirus resistance gene A; n = nucleus.
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MUM1+ (figure 3J) B cells were found in the center of the
ELSs with few CD138+ plasma cells seen in the periphery
(figure e-1I, arrowheads). Figure 3N demonstrates the
colocalization of POU2AF1 and CD20 in the follicle-like
structures. POU2AF1+ and PAX5+ B cells were scarce in B-
cell–rich aDM and absent in classic aDM or jDM (data not
shown).

Discussion
Ectopic lymphoid neogenesis can occasionally be recognized in
nonlymphoid tissues in different autoimmune and chronic in-
flammatory diseases such as rheumatoid arthritis, Sjögren syn-
drome, MS, Hashimoto thyroiditis, Helicobacter pylori–induced
gastritis, and chronic hepatitis C virus infection.10,13,30 However,
inDM,ELS formationwith germinal center architecture seems to
be an extremely rare phenomenon, which is very likely regulated
by specific immune-inflammatory mechanisms. Therefore, our
study further aimed at elucidating the impact of B cells on the
pathogenesis of DM using the follicle-like variant as a paradigm.

To characterize different histologic DM subgroups in terms of B-
cell composition, skeletal muscle tissue of patients with DMwas
graded histologically and immunohistochemically for the pres-
ence and number of B cells, follicle-like aggregates, and the
presence of ectopic germinal centers. We further evaluated the
molecular signature of type 1 IFN-driven genes, known to be
intimately involved in the pathogenesis of DM,2,4,19,31 as well as

genes implicated in lymphoangiogenesis. Consistent with the
presence of dense B-cell aggregates, high expression of CXCL12,
CXCL13, CCL19, LTA, LTB, CXCR4, CXCR5, CCR7, and
IL23—genes known to induce lymphoneogenesis—was found
at sites of chronic inflammation. These cytokines have all also
been reported to be pivotal for B-cell migration.23,32,33 They
were associated with increasing size of B-cell aggregates and
formation of ELSs with compartimentalization of B- and T-cell
zones, HEVs, and D2-40+ follicular dendritic cell networks. We
further show that not only follicular dendritic cells but also
CD23+ B cells as specialized mature B-cell subpopulations seem
to be a source of CXCL13 expression within ELSs in aDM,
suggesting a positive feedbackmechanism that contributes to the
recruitment of additional cells.34

Both TNFSF11 (RANKL) and TNFSF13B (BAFF) have
been identified to play a role in several autoimmune diseases
and are reported to be intimately involved in the development
of ELSs in rheumatoid arthritis and Sjögren syndrome.35–37

Moreover, RANKL-deficient mice demonstrate profound
defects in lymph node formation and B-cell development,
which highlights its significance in lymph node organogene-
sis.38 Accordingly, we identified a significant increase of
TNFSF11 and TNFSF13B expression in follicle-like aDM
muscle samples, providing support that both are also associ-
ated with ELS formation in aDM.

The formation of ectopic germinal centers with B-cell pro-
liferation and different states of B-cell maturation is further

Figure 5 IM amplification loop of type 1 IFN-inducible gene expression

Skeletal muscle in DM shows perifascicular atrophy and loss of capillaries. Both myofibers and capillary endothelial cells express type 1 IFN-inducible gene
transcripts. In addition, B cells within the endo- and perimysial space express type 1 IFN-inducible gene transcripts, e.g., MxA. Tubuloreticular inclusions
within endothelial cells and B cells can be considered downstream markers of type 1 IFN signaling, illustrating specific damage of these structures. The
reciprocal effects of IFNs on the perifascicular fibers, capillaries, and B cells may, once activated, feed an amplification loop that enhances adverse patho-
mechanisms in DM. DM = dermatomyositis; IFN = interferon; MxA = myxovirus resistance gene A.
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highlighted by PAX5, IRF4 (MUM-1), and PRDM1
expressed by maturing B cells. These genes and proteins,
involved in the terminal differentiation along plasma cells
lineage,28,39 were highly expressed by proliferating B cells
within the center of ELSs in follicle-like aDM.

Of note, we observed a significant upregulation of numerous
genes implicated in different aspects of the IFN signature in B-
cell–rich and follicle-like aDM muscle tissue in contrast to
classic aDM and jDM. Although not selectively induced by
type I IFN, previous studies provided evidence that most of
these IFN-stimulated genes can be considered type I IFN-
driven in the context of DM.4,40 In fact, we have investigated
a large panel of genes representative for the type 1 IFN sig-
nature, e.g., MxA, ISG20, CCL19, CXCL12, CXCR4, and
IL72,19,21 and others, reported to orchestrate T-cell responses,
apoptosis, and adaptive immunity and found that they were all
involved in DM, significantly correlating with the intrinsic
amount of B cells. In fact, especially MxA staining revealed
most striking staining results in B-cell–rich and follicle-like
aDM, illustrating that not only the ISGs are involved in nu-
merous relevant pathomechanisms in DM but also highlights
that therapies targeting type 1 IFNs may act effectively on
multiple levels of the immune response.

In addition, we present that B-cell aggregates in aDM samples
are associated with significant upregulation of cytokines in-
volved in Th1- and Th17-mediated immunity, e.g., CXCR3,25

and TNFA.

We, therefore, hypothesize that the prominent in situ B-cell
differentiation in skeletal muscle during DM may dysre-
gulate (adaptive) immunity leading to excessive
IFN response, which itself may fuel an amplification loop
(figure 5) that enhances adverse pathomechanisms in DM.
Our results suggest that these pathomechanisms seem to
occur independent of the presence of ectopic germinal
center formation, in both B-cell–rich and follicle-like aDM,
which might, therefore, be considered to belong to the
same clinicopathologic spectrum. Assessment of B-cell ar-
chitecture, including ultrastructure and function, together
with ISG analysis can be useful tools to stratify patients with
DM and develop therapies targeting, e.g., B-cell immunity
or type 1 IFN signaling for these disease subsets in-
dividually. Nevertheless, further prospective clinical studies
will be needed to determine the effectiveness of such
therapeutic options in the context of DM.
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