Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

User menu

  • My Alerts
  • Log in

Search

  • Advanced search
Neurology Neuroimmunology & Neuroinflammation
Home
A peer-reviewed clinical and translational neurology open access journal
  • My Alerts
  • Log in
Site Logo
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

Share

October 2016; 3 (5) Views & ReviewsOpen Access

The topographical model of multiple sclerosis

A dynamic visualization of disease course

Stephen C. Krieger, Karin Cook, Scott De Nino, Madhuri Fletcher
First published September 7, 2016, DOI: https://doi.org/10.1212/NXI.0000000000000279
Stephen C. Krieger
From the Corinne Goldsmith Dickinson Center for MS (S.C.K.), Icahn School of Medicine at Mount Sinai, New York; and Harrison and Star (K.C., S.D.N., M.F.), New York, NY.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karin Cook
From the Corinne Goldsmith Dickinson Center for MS (S.C.K.), Icahn School of Medicine at Mount Sinai, New York; and Harrison and Star (K.C., S.D.N., M.F.), New York, NY.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott De Nino
From the Corinne Goldsmith Dickinson Center for MS (S.C.K.), Icahn School of Medicine at Mount Sinai, New York; and Harrison and Star (K.C., S.D.N., M.F.), New York, NY.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Madhuri Fletcher
From the Corinne Goldsmith Dickinson Center for MS (S.C.K.), Icahn School of Medicine at Mount Sinai, New York; and Harrison and Star (K.C., S.D.N., M.F.), New York, NY.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Citation
The topographical model of multiple sclerosis
A dynamic visualization of disease course
Stephen C. Krieger, Karin Cook, Scott De Nino, Madhuri Fletcher
Neurol Neuroimmunol Neuroinflamm Oct 2016, 3 (5) e279; DOI: 10.1212/NXI.0000000000000279

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
10403

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

Article Figures & Data

Figures

  • Tables
  • Additional Files
  • Figure 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1 The topographical model of multiple sclerosis, clinical (A) and subclinical (B) views

    (A) Clinical view: water is opaque, only above-threshold peaks are visible. (a) Above-threshold topographical peaks depict relapses and quantified Expanded Disability Status Scale/functional system disability measures. Each peak yields localizable clinical findings; the topographical distribution defines the clinical picture for an individual patient. (b) Water level at outset reflects baseline functional capacity and may be estimated by baseline brain volume. (c) Water level decline reflects loss of functional reserve and may be estimated by metrics of annualized brain atrophy. (B) Subclinical view: water is translucent, both clinical signs and subthreshold lesions are visible. (d) Subthreshold topographical peaks depict T2 lesion number and volume. (e) The tallest peaks (i.e., the most destructive) in the cerebral hemispheres are shown capped in black as T1 black holes.

  • Figure 2
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2 Lesion localization visualized in the top view of the model

    In this view, the topographical distribution of lesions is shown in the anatomical grid, grouped across the 3 key regions with lateralization, replicating a distilled MRI perspective. Both T2 lesions and a representative T1 black hole are shown. (A) Top (clinical) view: water is opaque, only above-threshold peaks are visible. (B) Top (subclinical) view: water is translucent, subthreshold lesions are visible.

  • Figure 3
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3 Archetypal MS clinical course depicted over 20 years

    Still images from 5 key time points in this 20-year clinical course depiction are shown. (A) RIS: lesions emerge as topographical peaks that are apparent as T2 lesions on MRI but have not crossed the clinical threshold. (B) CIS: the first lesion (circled) to cross the clinical threshold denotes CIS. Lesions arising in the shallow end are more likely to cross the clinical threshold, as there is less functional reserve in these regions. (C) RRMS: the emergence of subsequent subthreshold lesions defines RRMS by the McDonald criteria. The second clinical relapse (circled) defines clinically definite MS—in this example, a brainstem attack. Additional lesions denote ongoing disease activity, i.e., “base effects.” (D) SPMS is characterized by a gradual decline in functional capacity, revealing the underlying lesion topography above the clinical threshold. Disability is driven here principally by the dropping threshold, i.e., “surface effects” (downward arrow). Progression takes the form of a patient's particular disease topography, unmasking existing deficits and recapitulating symptoms of prior relapse—in this example, multifocal myelopathy and brainstem/cerebellar signs. (E) SPMS with activity is demonstrated by a new relapse (circled) occurring in the context of progressive disease. CIS = clinically isolated syndrome; MS = multiple sclerosis; RIS = radiologically isolated syndrome; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS.

  • Figure 4
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4 Four representative disease-course archetypes

    The model conceptualizes relapsing and progressive contributions to disease course along a continuum: an individual's disease course can be driven predominantly by relapses, or predominantly by progression, and those with very mild or stable disease may demonstrate neither. Each archetypal disease course is shown at year 5 and year 20. (A) Relapsing-remitting MS with early secondary progressive disease: relapsing disease transitions to secondary progressive MS with disability being driven in the early years by relapse (“base effects”) and in the later years primarily by the declining threshold (“surface effects”). (B) Relapsing-remitting MS with highly active disease is characterized topographically by extensive clinical and subclinical inflammatory activity. Here, several lesions in the spinal cord and brainstem do not resolve below the clinical threshold, demonstrating lesions with high severity and low recovery capacity. (C) Primary progressive MS: several subthreshold lesions denote underlying disease activity, which do not cross the clinical threshold until functional reserve declines. Disability is driven here by the dropping threshold. (D) Mild course: no demonstrable disability is accumulated at 20 years of disease. All relapses resolve below the clinical threshold—demonstrating lesions with a high recovery capacity—and there is little depletion of functional reserve beyond that of normal aging. MS = multiple sclerosis.

Tables

  • Figures
  • Additional Files
  • Table

Additional Files

  • Figures
  • Tables
  • Videos

    Files in this Data Supplement:

    • Video Legends - Microsoft Word file
    • Video 1 - .mp4 file
    • Video 2 - .mp4 file
    • Video 3 - .mp4 file
    • Video 4 - .mp4 file

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • GLOSSARY
    • CONTEMPORARY CONCEPTUALIZATION OF MS DISEASE COURSE
    • THE TOPOGRAPHICAL MODEL OF MS AND THE RECAPITULATION HYPOTHESIS
    • CLINICAL PHENOMENA ILLUMINATED BY THE TOPOGRAPHICAL MODEL
    • IMPLICATIONS OF THE TOPOGRAPHICAL MODEL
    • FUTURE DIRECTIONS AND LIMITATIONS OF THE MODEL
    • AUTHOR CONTRIBUTIONS
    • STUDY FUNDING
    • DISCLOSURE
    • ACKNOWLEDGMENT
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Disclosures
Advertisement

Safety and Efficacy of Tenecteplase and Alteplase in Patients With Tandem Lesion Stroke: A Post Hoc Analysis of the EXTEND-IA TNK Trials

Dr. Nicole Sur and Dr. Mausaminben Hathidara

► Watch

Topics Discussed

  • Multiple sclerosis
  • MRI
  • Clinical neurology examination
  • Prognosis

Alert Me

  • Alert me when eletters are published

Recommended articles

  • Review
    Secondary Progressive Multiple Sclerosis
    New Insights
    Bruce A.C. Cree, Douglas L. Arnold, Jeremy Chataway et al.
    Neurology, June 04, 2021
  • Research Article
    Association of Age With Contrast-Enhancing Lesions Across the Multiple Sclerosis Disease Spectrum
    Marcus W. Koch, Jop Mostert, Yinan Zhang et al.
    Neurology, August 10, 2021
  • Articles
    Familial effects on the clinical course of multiple sclerosis
    A. E. Hensiek, S. R. Seaman, L. F. Barcellos et al.
    Neurology, January 29, 2007
  • Editorial
    Loss of Neurologic Reserve in Progressive Multiple Sclerosis
    A Paradigm Shift?
    Joep Killestein, Maria Liguori et al.
    Neurology: Clinical Practice, June 18, 2021
Neurology - Neuroimmunology Neuroinflammation: 10 (4)

Articles

  • Articles
  • Issues
  • Popular Articles

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology: Neuroimmunology & Neuroinflammation
Online ISSN: 2332-7812

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise