Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

User menu

  • My Alerts
  • Log in
  • Log out

Search

  • Advanced search
Neurology Neuroimmunology & Neuroinflammation
Home
A peer-reviewed clinical and translational neurology open access journal
  • My Alerts
  • Log in
  • Log out
Site Logo
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

Share

March 2017; 4 (2) Clinical/Scientific NotesOpen Access

Epstein-Barr–negative MS: a true phenomenon?

Ruth Dobson, Jens Kuhle, Jaap Middeldorp, Gavin Giovannoni
First published February 3, 2017, DOI: https://doi.org/10.1212/NXI.0000000000000318
Ruth Dobson
From the Blizard Institute (R.D., J.K., G.G.), Queen Mary University London; Department of Neurology (R.D.), St Georges Hospital, London, UK; Neurology, Departments of Medicine (J.K.), Biomedicine and Clinical Research, University Hospital Basel, Switzerland; and Department of Pathology (J.M.), VU University Medical Centre, Amsterdam.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jens Kuhle
From the Blizard Institute (R.D., J.K., G.G.), Queen Mary University London; Department of Neurology (R.D.), St Georges Hospital, London, UK; Neurology, Departments of Medicine (J.K.), Biomedicine and Clinical Research, University Hospital Basel, Switzerland; and Department of Pathology (J.M.), VU University Medical Centre, Amsterdam.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jaap Middeldorp
From the Blizard Institute (R.D., J.K., G.G.), Queen Mary University London; Department of Neurology (R.D.), St Georges Hospital, London, UK; Neurology, Departments of Medicine (J.K.), Biomedicine and Clinical Research, University Hospital Basel, Switzerland; and Department of Pathology (J.M.), VU University Medical Centre, Amsterdam.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gavin Giovannoni
From the Blizard Institute (R.D., J.K., G.G.), Queen Mary University London; Department of Neurology (R.D.), St Georges Hospital, London, UK; Neurology, Departments of Medicine (J.K.), Biomedicine and Clinical Research, University Hospital Basel, Switzerland; and Department of Pathology (J.M.), VU University Medical Centre, Amsterdam.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Citation
Epstein-Barr–negative MS: a true phenomenon?
Ruth Dobson, Jens Kuhle, Jaap Middeldorp, Gavin Giovannoni
Neurol Neuroimmunol Neuroinflamm Mar 2017, 4 (2) e318; DOI: 10.1212/NXI.0000000000000318

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
1203

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

Epstein-Barr virus (EBV) infection is associated with MS; up to 3.3% people with MS are EBV nuclear antigen-1 (EBNA1)-seronegative compared with 6.0% controls.1 EBV serology is complex, and multiple antigens are required to assess seropositive status.2,3 We examined a cohort of seemingly EBV-negative patients with clinically isolated syndrome (CIS). The size of the population enrolled in the International CIS study allowed us to examine the largest population of seemingly EBV-negative patients with CIS gathered to date.

Methods.

The International CIS study is a collaborative study across 33 centers. Inclusion and exclusion criteria and methods for sample and data collection have previously been described.4 Immunoglobulin G (IgG) reactivity against EBNA1 was initially evaluated using commercially available ELISA (ETI-EBNA-G, Diasorin, Italy) according to the manufacturer's instructions.

Samples with anti–EBNA1-IgG reactivity less than the manufacturer's cutoff value (CoV) (<20 AU/mL) for the ETI-EBNA-G ELISA (screen-negative) were tested using well-validated in-house ELISAs based on multiepitope peptides of EBNA1 and virus capsid antigen (VCA) using previously described methods.5,6 The CoV for the in-house ELISA was the mean OD450 value of 4 truly EBNA1- and VCA-negative sera plus twice the SD (mean + 2 SD). OD450 values were normalized against the CoV, and values >1.0 were considered positive. Samples demonstrating negative or borderline (0.8–1.2) results against both EBV antigens were investigated using an EBV-specific immunoblot.5

Results.

Patient details are provided in the table. The CIS cohort has previously been described in detail.4 Forty-one (3.9%) of 1,047 patients were screen-negative. Age, sex, time to serum sampling and clinically definite MS (CDMS) and follow-up duration were not different to the whole cohort. Screen-negative patients were less likely to be CSF oligoclonal band (OCB)-positive (48.8% vs 74.3%; p = 0.0009, Fisher exact test) and less likely to be smokers (p = 0.01). Anti–cytomegalovirus (CMV)-IgG4–negative patients were not less likely to be OCB-negative (52% vs 48%).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table

Details of the 41 patients with CIS who had undetectable anti–EBNA1-IgG levels on initial screening

Of the screen-negative samples, 5/41 had reactivity <1.0 for anti–EBNA1-IgG and 2/41 <1.0 for anti–VCA-IgG and 2/41 had reactivity <1.0 against both EBV antigens. When values obtained from the 2 EBNA1 assays were compared, they demonstrated a correlation coefficient (rSpearman) of 0.57 after 3 outliers with reactivity <CoV of the ETI-EBNA-G ELISA, but high reactivity on the in-house ELISA were excluded (figure, A). A Bland-Altman plot demonstrated no evidence of systemic bias and reasonable agreement between the 2 assays (figure, B). Of the 2 samples with low reactivity to both EBV antigens, 1 showed no reactivity on immunoblot. This patient was OCB-positive and developed CDMS during follow-up.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure Scatter graph and Bland-Altman plot demonstrating correlation and agreement between the 2 EBNA1 assays

(A) Scatter graph demonstrating correlation between the 2 Epstein-Barr virus nuclear antigen-1 (EBNA1) assays. (B) Bland-Altman plot demonstrating reasonable agreement between the 2 assays. Given the different arbitrary scales used to report assay results, the in-house ELISA values have been multiplied by the ratio of the mean values of each ELISA to allow them to be reported on the same scale.

Discussion.

Only 1 of 1,047 patients (<0.01%) was truly EBV-negative. Previous literature demonstrates a strong association between MS and EBV infection; in keeping with this, 41 patients (3.9%) showed no EBNA1-reactivity on initial screen. More detailed testing revealed a much higher rate of EBV seropositivity in CIS and MS patients than previously described.

There is significant antigenic diversity of anti–EBV-IgG responses in EBV carriers and patients with EBV-related disease.2,3 Serologic testing against multiple antigens is recommended to accurately define EBV status when examining the link between EBV infection and other diseases. In studies examining MS risk and EBV infection, the rate of EBV positivity in the population is highly dependent on the method used to determine EBV serostatus.7

ELISA against 2 different EBV antigens provides a screening method; immunoblot on apparently seronegative samples increases sensitivity. The ETI-EBNA-G ELISA was validated for Food and Drug Administration's approval against a cell-based EBNA1-anticomplement immunofluorescence. The CoV for this ELISA is likely set relatively high, giving borderline values a negative interpretation. The in-house ELISA that we used utilizes the same peptide antigen, but was validated against purified EBNA1, increasing sensitivity and explaining the correlation between EBNA1 titers in the 2 ELISAs. Some EBNA1-IgG–negative sera are positive against other EBV antigens.

The fact that patients who were EBNA1-screen–negative were less likely to have OCBs provides an avenue for future research; there is likely a biological link between lower EBV immunoreactivity and OCB production. However, in our earlier study, while OCB predicted a second event, lower EBV reactivity did not4—the relationship therefore is more complex than a simple linear or threshold effect. EBNA1-seropositivity occurs later than VCA seroconversion; low titers of anti–EBNA1-IgG may reflect recent EBV infection which has not yet triggered downstream biological events. It may be that patients who are EBNA1-screen–negative have a lower overall level of immune response, resulting in negative OCBs. However, the same relationship is not seen in the CMV-seronegative population, hinting at an EBV-specific link.

With only 1 of 1,047 patients in our large international cohort testing negative for EBV across multiple antigens and 2 platforms, it seems that while it is possible to be truly EBV seronegative and develop MS, this is extremely rare. It seems likely that this indicates a role for EBV in MS development, and further research is needed to examine this further.

Footnotes

  • Full list of investigators and centers can be found in the coinvestigators list at Neurology.org/nn.

  • Supplemental data at Neurology.org/nn

  • Author contributions: R.D. analyzed the data, performed the statistical analysis, drafted the manuscript, and produced the final version. J.K. led the international CIS study, arranged sample analysis, and collated all data prior to analysis. J.M. performed the EBV ELISA and immunoblot. G.G. conceived the study and provided intellectual guidance. All authors revised the draft manuscript and approved the final version.

  • Study funding: This work was supported by institutional funding and in part by the BMBF grant KKNMS (Competence Net Multiple Sclerosis) to H Tumani. The funder had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

  • Disclosure: R. Dobson received research support from Multiple Sclerosis Society of Great Britain and Northern Ireland. J. Kuhle's institution received research support from Swiss MS Society, Biogen, Novartis, Roche, Genzyme, and Merck Serono; he received research support from Bayer AG, Genzyme, Novartis, Roche Pharma (Schweiz) AG, Swiss National Research Foundation, ECTRIMS, University of Basel, and Swiss MS Society. J.M. Middeldorp serves on the editorial board of the Journal of Clinical Virology and Journal of Virological Methods; receives publishing royalties from Springer; is employed by Cyto-Barr BV; and consulted for Roche Diagnositcs and Argenx. G. Giovannoni served on the scientific advisory board of Biogen-Idec, FivePrime, Genzyme, GW Pharma, Ironwood, Merck Serono, Novartis, Roche, Sanofi-Aventis, Synthon BV, Teva, Vertex Pharmaceuticals, AbbVie, and Canbex; received speaker honoraria from Biogen-Idec, Genzyme, GW Pharma, Merck Serono, Novartis, Roche, and Teva; is an editor for Multiple Sclerosis and Related Disorders; consulted for Biogen-Idec, FivePrime, Genzyme, GW Pharma, Ironwood, Merck Serono, Novartis, Roche, Sanofi-Aventis, Synthon BV, Teva, Vertex Pharmaceuticals, Abbvie, and Canbex; is on the speakers' bureau for Novartis, and Teva; and received research support from Genzyme and Merck. Go to Neurology.org/nn for full disclosure forms. The Article Processing Charge was paid by Queen Mary University.

  • Received October 4, 2016.
  • Accepted in final form November 8, 2016.
  • Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

References

  1. 1.↵
    1. Munger KL,
    2. Levin LI,
    3. O'Reilly EJ,
    4. Falk KI,
    5. Ascherio A
    . Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler 2011;17:1185–1193.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. De Paschale M,
    2. Clerici P
    . Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World J Virol 2012;1:31–43.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Middeldorp J
    . Epstein-barr virus-specific humoral immune responses in health and disease. Curr Top Microbiol Immunol 2015;391:289–323.
    OpenUrl
  4. 4.↵
    1. Kuhle J,
    2. Disanto G,
    3. Dobson R, et al
    . Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult Scler 2015;21:1013–1024.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. de Sanjose S,
    2. Bosch R,
    3. Schouten T, et al
    . Epstein-Barr virus infection and risk of lymphoma: immunoblot analysis of antibody responses against EBV-related proteins in a large series of lymphoma subjects and matched controls. Int J Cancer 2007;121:1806–1812.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Jafari N,
    2. van Nieropa GP,
    3. Verjans GMGM,
    4. Osterhaus ADME,
    5. Middeldorp JM,
    6. Hintzen RQ
    . No evidence for intrathecal IgG synthesis to Epstein Barr virus nuclear antigen-1 in multiple sclerosis. J Clin Virol 2010;49:26–31.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Pakpoor J,
    2. Disanto G,
    3. Gerber JE, et al
    . The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler 2013;19:162–166.
    OpenUrlAbstract/FREE Full Text

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures
Advertisement

Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder

Dr. David E. Vaillancourt and Dr. Shannon Y. Chiu

► Watch

Topics Discussed

  • Multiple sclerosis
  • Viral infections

Alert Me

  • Alert me when eletters are published

Recommended articles

  • Articles
    Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases
    R.C. Selter, F. Brilot, V. Grummel et al.
    Neurology, April 21, 2010
  • Articles
    Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI
    R. A. Farrell, D. Antony, G. R. Wall et al.
    Neurology, May 20, 2009
  • Article
    Elevated EBNA-1 IgG in MS is associated with genetic MS risk variants
    Karim L. Kreft, Gijsbert P. Van Nierop, Sandra M.J. Scherbeijn et al.
    Neurology: Neuroimmunology & Neuroinflammation, October 13, 2017
  • Article
    Epstein-Barr virus, cytomegalovirus, and multiple sclerosis susceptibility
    A multiethnic study
    Annette Langer-Gould, Jun Wu, Robyn Lucas et al.
    Neurology, August 30, 2017
Neurology - Neuroimmunology Neuroinflammation: 10 (4)

Articles

  • Articles
  • Issues
  • Popular Articles

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology: Neuroimmunology & Neuroinflammation
Online ISSN: 2332-7812

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise