MRI phenotypes in MS
Longitudinal changes and miRNA signatures
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective To classify and immunologically characterize persons with MS based on brain lesions and atrophy and their associated microRNA profiles.
Methods Cerebral T2-hyperintense lesion volume (T2LV) and brain parenchymal fraction (BPF) were quantified and used to define MRI phenotypes as follows: type I: low T2LV, low atrophy; type II: high T2LV, low atrophy; type III: low T2LV, high atrophy; type IV: high T2LV, high atrophy, in a large cross-sectional cohort (n = 1,088) and a subset with 5-year lngitudinal follow-up (n = 153). Serum miRNAs were assessed on a third MS cohort with 2-year MRI phenotype stability (n = 98).
Results One-third of the patients had lesion-atrophy dissociation (types II or III) in both the cross-sectional and longitudinal cohorts. At 5 years, all phenotypes had progressive atrophy (p < 0.001), disproportionally in type II (BPF −2.28%). Only type IV worsened in physical disability. Types I and II showed a 5-year MRI phenotype conversion rate of 33% and 46%, whereas III and IV had >90% stability. Type II switched primarily to IV (91%); type I switched primarily to II (47%) or III (37%). Baseline higher age (p = 0.006) and lower BPF (p < 0.001) predicted 5-year phenotype conversion. Each MRI phenotype demonstrated an miRNA signature whose underlying biology implicates blood-brain barrier pathology: hsa.miR.22.3p, hsa.miR.361.5p, and hsa.miR.345.5p were the most valid differentiators of MRI phenotypes.
Conclusions MRI-defined MS phenotypes show high conversion rates characterized by the continuation of either predominant neurodegeneration or inflammation and support the partial independence of these 2 measures. MicroRNA signatures of these phenotypes suggest a role for blood-brain barrier integrity.
Glossary
- BPF=
- brain parenchymal fraction;
- Cq=
- cycle quantification;
- EDSS=
- Expanded Disability Status Scale;
- miRNA=
- microRNA;
- SP=
- secondary progressive;
- T2LV=
- T2-hyperintense lesion volume
Footnotes
Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NN.
The Article Processing Charge was funded by the authors.
- Received July 31, 2018.
- Accepted in final form November 9, 2018.
- Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Hastening the Diagnosis of Amyotrophic Lateral Sclerosis
Dr. Brian Callaghan and Dr. Kellen Quigg
► Watch
Related Articles
- No related articles found.
Topics Discussed
Alert Me
Recommended articles
-
What's Happening
What's happening in Neurology® Neuroimmunology & Neuroinflammationet al.Neurology, August 05, 2019 -
Article
Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosisRohit Bakshi, Ada Yeste, Bonny Patel et al.Neurology - Neuroimmunology Neuroinflammation, January 27, 2016 -
Articles
Rate of brain atrophy in relapsing MS decreases during treatment with IFNβ-1aM. Hardmeier, S. Wagenpfeil, P. Freitag et al.Neurology, January 24, 2005 -
Articles
MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MSD. H. Miller, D. Soon, K. T. Fernando et al.Neurology, April 23, 2007