Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Diversity, Equity, & Inclusion (DEI)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Neurology: Neuroimmunology & Neuroinflammation COVID-19 Article Hub
    • Diversity, Equity, & Inclusion (DEI)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

User menu

  • My Alerts
  • Log in

Search

  • Advanced search
Neurology Neuroimmunology & Neuroinflammation
Home
A peer-reviewed clinical and translational neurology open access journal
  • My Alerts
  • Log in
Site Logo
  • Home
  • Articles
  • Issues
  • COVID-19 Article Hub
  • Infographics & Video Summaries

Share

May 2019; 6 (3) ArticleOpen Access

Breaking the cycle

Reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate

Arie R. Gafson, Constantinos Savva, Tom Thorne, Mark David, Maria Gomez-Romero, Matthew R. Lewis, Richard Nicholas, Amanda Heslegrave, Henrik Zetterberg, Paul M. Matthews
First published April 22, 2019, DOI: https://doi.org/10.1212/NXI.0000000000000562
Arie R. Gafson
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Constantinos Savva
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tom Thorne
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark David
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Gomez-Romero
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew R. Lewis
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Nicholas
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amanda Heslegrave
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henrik Zetterberg
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul M. Matthews
From the Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Citation
Breaking the cycle
Reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate
Arie R. Gafson, Constantinos Savva, Tom Thorne, Mark David, Maria Gomez-Romero, Matthew R. Lewis, Richard Nicholas, Amanda Heslegrave, Henrik Zetterberg, Paul M. Matthews
Neurol Neuroimmunol Neuroinflamm May 2019, 6 (3) e562; DOI: 10.1212/NXI.0000000000000562

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
1171

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

Abstract

Objective To infer molecular effectors of therapeutic effects and adverse events for dimethyl fumarate (DMF) in patients with relapsing-remitting MS (RRMS) using untargeted plasma metabolomics.

Methods Plasma from 27 patients with RRMS was collected at baseline and 6 weeks after initiating DMF. Patients were separated into discovery (n = 15) and validation cohorts (n = 12). Ten healthy controls were also recruited. Metabolomic profiling using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS) was performed on the discovery cohort and healthy controls at Metabolon Inc (Durham, NC). UPLC-MS was performed on the validation cohort at the National Phenome Centre (London, UK). Plasma neurofilament concentration (pNfL) was assayed using the Simoa platform (Quanterix, Lexington, MA). Time course and cross-sectional analyses were performed to identify pharmacodynamic changes in the metabolome secondary to DMF and relate these to adverse events.

Results In the discovery cohort, tricarboxylic acid (TCA) cycle intermediates fumarate and succinate, and TCA cycle metabolites succinyl-carnitine and methyl succinyl-carnitine increased 6 weeks following treatment (q < 0.05). Methyl succinyl-carnitine increased in the validation cohort (q < 0.05). These changes were not observed in the control population. Increased succinyl-carnitine and methyl succinyl-carnitine were associated with adverse events from DMF (flushing and abdominal symptoms). pNfL concentration was higher in patients with RRMS than in controls and reduced over 15 months of treatment.

Conclusion TCA cycle intermediates and metabolites are increased in patients with RRMS treated with DMF. The results suggest reversal of flux through the succinate dehydrogenase complex. The contribution of succinyl-carnitine ester agonism at hydroxycarboxylic acid receptor 2 to both therapeutic effects and adverse events requires investigation.

Glossary

BBB=
blood-brain barrier;
DFM=
dimethyl fumarate;
DMT=
disease-modifying treatment;
EDSS=
Expanded Disability Status Scale;
ESI=
electrospray ionization;
HCA2=
hydroxycarboxylic acid receptor 2;
MDA=
mean decrease in accuracy;
MMF=
monomethyl fumarate;
MS/MS=
tandem mass spectrometry;
NfL=
neurofilament light;
Nrf2=
nuclear factor (erythroid-derived 2)-like 2;
RRMS=
relapsing-remitting MS;
TCA=
tricarboxylic acid;
UPLC-MS=
ultra-high-performance liquid chromatography mass spectrometry

Footnotes

  • Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NN.

  • The Article Processing Charge was funded by the MRC.

  • Received January 8, 2019.
  • Accepted in final form February 27, 2019.
  • Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • Glossary
    • Methods
    • Results
    • Discussion
    • Author contributions
    • Study funding
    • Disclosure
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures
Advertisement

SARS-CoV-2 Vaccination Safety in Guillain-Barré Syndrome, Chronic Inflammatory Demyelinating Polyneuropathy, and Multifocal Motor Neuropathy

Dr. Jeffrey Allen and Dr. Nicholas Purcell

► Watch

Related Articles

  • No related articles found.

Topics Discussed

  • Case control studies
  • Clinical neurology history
  • Multiple sclerosis
  • Clinical trials Observational study (Cohort, Case control)
  • Medical care

Alert Me

  • Alert me when eletters are published

Recommended articles

  • What's Happening
    What's happening in Neurology® Neuroimmunology & Neuroinflammation
    et al.
    Neurology, November 25, 2019
  • Article
    Monitoring disease activity in multiple sclerosis using serum neurofilament light protein
    Lenka Novakova, Henrik Zetterberg, Peter Sundström et al.
    Neurology, October 27, 2017
  • Article
    Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease
    Ignacio Illán-Gala, Alberto Lleo, Anna Karydas et al.
    Neurology, November 16, 2020
  • Article
    Dimethyl Fumarate Treatment in Patients With Primary Progressive Multiple Sclerosis
    A Randomized, Controlled Trial
    Helene Højsgaard Chow, Jacob Talbot, Henrik Lundell et al.
    Neurology: Neuroimmunology & Neuroinflammation, August 24, 2021
Neurology - Neuroimmunology Neuroinflammation: 10 (3)

Articles

  • Articles
  • Issues
  • Popular Articles

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology: Neuroimmunology & Neuroinflammation
Online ISSN: 2332-7812

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise