Clinical/Scientific Notes

PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY DURING FUMARATE MONOTHERAPY OF PSORIASIS

In September 2013, a 69-year-old Caucasian man who was anti-JC virus (JCV) antibody positive was admitted to our hospital with slowly progressing right hemiparesis and aphasia lasting for approximately 6 months. Medical history revealed arterial hypertension, biological aortic valve replacement, and psoriasis vulgaris, treated with 3–6 tablets daily of dimethylfumarate (DMF; 120 mg)/ethylhydrogenfumarate (EHF; 95 mg) (Fumaderm, Biogen Idec, Ismaning, Germany) since December 2008 (table e-1 at Neurology.org/nn). No other immunosuppressive pretreatment had been given. In April/May 2013, the patient recognized a steadily progressing weakness of the right leg. In June 2013, an external diagnosis of ischemic stroke was made. An MRI scan (figure e-1), which was performed after deterioration of clinical symptoms, revealed a subcortical left hemispheric lesion; biopsy demonstrated macrophage-dominated inflammation, dysmorphic astrocytes, simian virus 40 positivity, and several p53- and MiB1-positive cells, suggestive of a JCV encephalitis (figure e-2). JCV DNA was detected in CSF at 2 different time points using a highly sensitive PCR protocol (September 24, 2013, 16 copies/mL; October 7, 2013, 42 copies/mL), leading to the diagnosis of progressive multifocal leukoencephalopathy (PML) in September 2013. Further diagnostic workup (table e-2) unmasked toxic bone marrow damage (figure e-3) and an increased excretion of kappa light chains in urine without any evidence for a plasmocytoma. Taking into account the patient’s initial presentation with a slowly progressive paresis since April/May 2013 as well as the initial MRI scan (figure e-1), which is compatible with the PML diagnosis, we believe that the onset of PML was in April/May without preexisting leukopenia and only moderate lymphopenia (grade 2 lymphopenia: 724–738 cells/µL, figure). Several weeks after the onset of symptoms, the patient developed fever, chills, and a generalized lymphadenopathy with a lymphocyte count of 80 cells/µL (Figure Leukocyte and lymphocyte counts). The patient was diagnosed with immune reconstitution inflammatory syndrome (IRIS) and was started on dexamethasone and intravenous immunoglobulin. The patient made a complete recovery and was discharged from the hospital after 4 weeks of treatment.
later, white blood cell count dropped to a minimum of 4,800 cells/µL with 288 cells/µL lymphocytes under continuous Fumaderm treatment. Fumaderm was discontinued, and treatment with mitrazapine (45 mg/day; Remerigil, MSD Sharp und Dohme GmbH, Haar, Germany), meltoquine (250 mg/week; Lariam, Roche Pharma AG, Grenzach-Wyhlen, Germany), and levetiracetam (1,000 mg/day; Keppra, UCB Pharma GmbH, Monheim, Germany) was initiated.\(^2\)

One month later, a mild immune reconstitution inflammatory syndrome (IRIS) occurred, with deterioration of the hemiparesis (Karnofsky index [KI] 50%) accompanied by gadolinium enhancement on MRI. Two IV methylprednisolone treatments (each 500 mg/day for 3 days) were given. In June 2014, hemiparesis and aphasia had improved (KI 90%), JCV CSF PCR was negative, and leukocyte and lymphocyte counts had normalized (8,310 cells/µL and 1,240 cells/µL, respectively). Cerebral MRI scan was stable.

In contrast to the previously described cases of Fumaderm- and Psorinovo-associated PML in psoriasi,\(^3,4\) we present a case without a preexisting, long-standing, and severe leukopenia/lymphopenia (figure 1) or immunosuppressive pretreatment. In the absence of other discernable myelotoxic factors, bone marrow damage might have been related to Fumaderm treatment. Despite the diagnostic delay, disease course, including IRIS, was mild.\(^3,5\) Further studies on potential myelotoxic effects of fumarates and specific effects of DMF vs EHF are warranted. Physicians treating multiple sclerosis patients with DMF should be vigilant for PML as a possible but rare side effect. A long-lasting and presumably severe lymphopenia may especially predispose patients to PML.

From the Departments of Neurology (R.H., S.F., A.K., R.S., R.G., A.C.), Dermatology (P.A.), and Radiology (B.B., C.L.), St. Josef Hospital Bochum, Ruhr University, Germany; and Department of Neuropathology (I.M.), University Medical Center, Georg August University, Göttingen, Germany.

Author contributions: R. Hoepner: collected and interpreted the data, drafted and revised the manuscript. S. Faiszter: collected and interpreted the data, drafted the manuscript. A. Klausing: interpreted the data, revised the manuscript. R. Schneider: interpreted the radiologic data, revised the manuscript. I. Metz: interpreted the neuropathological findings, critically reviewed the manuscript. B. Bellenberg: interpreted the radiologic data, revised the manuscript. C. Lukas: interpreted the radiologic data, revised the manuscript. P. Altmeyer: interpreted the data, revised the manuscript. A. Chan: interpreted the data, drafted and revised the manuscript.

Acknowledgment: The authors thank Prof. Dr. med. Anke Reinacher-Schick for her great support in hematopoietic diagnostics and Prof. Dr. med. Andrea Tantrupfel/Dr. med. M. Gruener for providing pictures of the bone marrow biopsy.

Study funding: Research support from the German Ministry for Education and Research (BMBF, German Competence Network Multiple Sclerosis [KKNMS], 01GI0914).

Disclosure: R. Hoepner has received travel funding and speaker honoraria from Biogen Idec and Novartis. S. Faiszter has received travel grants from Biogen Idec and Genzyme. A. Klausing and R. Schneider report no disclosures. I. Metz has received speaker honoraria and travel grants from Biogen Idec, Bayer Healthcare, Teva, Serono, and Novartis; and has received research support from Biogen Idec and German Ministry for Education and Research. B. Bellenberg reports no disclosures. C. Lukas is on the scientific advisory board for Biogen Idec, Novartis, and Sanofi; has received travel funding and/or speaker honoraria from Bayer Schering, Novartis, Biogen Idec, Teva, Genzyme, and Sanofi; and has received research support from Merck Serono, Federal Ministry of Education and Research of the Federal Republic of Germany, and Novartis Foundation. P. Altmeyer reports no disclosures. R. Gold is on the scientific advisory board for Teva, Biogen Idec, Bayer Schering, and Novartis; has received speaker honoraria from Biogen Idec, Teva, Bayer Schering, and Novartis; is an editor for Therapeutic Advances in Neurological Disorders; is on the editorial boards for American Journal of Pathology, Journal of Neuroimmunology, and Experimental Neurology; has consulted for Biogen Idec, Elan, Teva, and Chugai Inc; and has received research support from Teva, Biogen Idec, Bayer Schering, Merck Serono, and Novartis. A. Chan has served on the scientific advisory board for Bayer Schering, Biogen Idec, Genzyme, Merck Serono, Novartis Pharma, Sanofi Aventis, and Teva Neuroscience; has received speaker honoraria from Almirall, Bayer Schering, Biogen Idec, Genzyme, Merck Serono, Novartis, Sanofi Aventis, and Teva Neuroscience; was a guest editor for the International Journal of Endocrinology; holds a patent for proteomic profiles of NMO; has consulted for Bayer Schering, Biogen Idec, Genzyme, Merck Serono, Novartis, Sanofi Aventis, and Teva Neuroscience; has received research support from Biogen Idec, Novartis Pharma, Genzyme, German Ministry for Education and Research, and Ruhr University Bochum; and has consulted for Sanofi Aventis for legal proceedings. Go to Neurology.org for full disclosure forms. The Article Processing Charge was paid by the authors.

This is an open access article distributed under the terms of the Creative Commons Attribution-NoDerivative 3.0 License, which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.

Received August 18, 2014. Accepted in final form January 14, 2015.

Correspondence to Dr. Chan: Andrew.Chan@rub.de and Dr. Gold: ralf.gold@rub.de

Progressive multifocal leukoencephalopathy during fumarate monotherapy of psoriasis
Neurol Neuroimmunol Neuroinflamm 2015;2;
DOI 10.1212/NXI.0000000000000085

This information is current as of March 12, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://nn.neurology.org/content/2/3/e85.full.html

Supplementary Material
Supplementary material can be found at:
http://nn.neurology.org/content/suppl/2015/03/12/2.3.e85.DC1

References
This article cites 5 articles, 1 of which you can access for free at:
http://nn.neurology.org/content/2/3/e85.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Encephalitis
http://nn.neurology.org/cgi/collection/encephalitis
Multiple sclerosis
http://nn.neurology.org/cgi/collection/multiple_sclerosis
Viral infections
http://nn.neurology.org/cgi/collection/viral_infections

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://nn.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://nn.neurology.org/misc/addir.xhtml#reprintsus

Neurol Neuroimmunol Neuroinflamm is an official journal of the American Academy of Neurology. Published since April 2014, it is an open-access, online-only, continuous publication journal. Copyright © 2015 American Academy of Neurology. All rights reserved. Online ISSN: 2332-7812.