A 35-year-old woman presented with paraparesis, T7 sensory level, and urinary retention 5 days after developing chickenpox. Spinal cord MRI showed a longitudinally extensive myelitis (figure 1). Despite treatment with IV methylprednisolone (1 g/d × 5) and acyclovir (10 mg/kg/8 h × 3 weeks), the patient developed complete paraplegia, bilateral arm paresis, and a cervicothoracic sensory level. New MRI showed a cystic-like cervical lesion and patchy signs of subacute hemorrhage with gadolinium enhancement from C7 to conus (figure 1). The follow-up MRI 18 months later showed severe spinal cord atrophy below C7 with hemosiderin deposit (figure 2). The MRI findings, and the devastating evolution, mirror the pathologic features described in acute ascending necrotizing myelitis.1

VANISHING SPINAL CORD AFTER VARICELLA-ZOSTER VIRUS MYELITIS

A 35-year-old woman presented with paraparesis, T7 sensory level, and urinary retention 5 days after developing chickenpox. Spinal cord MRI showed a longitudinally extensive myelitis (figure 1). Despite treatment with IV methylprednisolone (1 g/d × 5) and acyclovir (10 mg/kg/8 h × 3 weeks), the patient developed complete paraplegia, bilateral arm paresis, and a cervicothoracic sensory level. New MRI showed a cystic-like cervical lesion and patchy signs of subacute hemorrhage with gadolinium enhancement from C7 to conus (figure 1). The follow-up MRI 18 months later showed severe spinal cord atrophy below C7 with hemosiderin deposit (figure 2). The MRI findings, and the devastating evolution, mirror the pathologic features described in acute ascending necrotizing myelitis.1

*These authors contributed equally to this work.

Author contributions: M.S., J.A., and A.S.: analysis/interpretation of the data and drafting and reviewing the manuscript. J.B., N.S.-V., J.S., Y.B., S.L., and F.G.: acquisition of data and revising the manuscript for intellectual content. All authors have approved final approval of the manuscript.

Study funding: No targeted funding reported.

Disclosure: M. Sepúlveda, J. Almeida, and J. Berenguer report no disclosures. N. Solá-Valls received research support from Instituto de Salud Carlos III, Spain and Fondo Europeo de Desarrollo Regional, Predoctoral grant for Health Research. J. Saura received travel funding and/or speaker honoraria from Pfizer. Y. Blanco reports no disclosures. S. Llufriu served on the scientific advisory board for Tejico and Novartis and received travel funding and speaker honoraria from Biogen, Teva, Novartis, and Genzyme. F. Graus is on the editorial board for Lancet; holds a patent for use of IgLON5 as a diagnostic test; and receives publishing royalties from Euroimmun. A. Saiz received travel funding and/or speaker honoraria from and consulted for Bayer-Schering, Merck-Serono, Biogen Idec, Sanoﬁ-Aventis, Teva, and Novartis. Go to Neurology.org/nn for full disclosure forms.

Received March 29, 2017. Accepted in final form April 19, 2017.

Correspondence to Dr. Saiz: asaiz@clinic.cat

At onset, sagittal MRI shows an extensive cervicothoracic T2 hyperintensity (A.a and A.b). After 3 weeks of therapy, the extensive lesion persists (B.a and B.b) and shows a central cystic-like lesion at C4 level (B.a and B.c, arrows), suggestive signs of subacute hemorrhage (T1 hyperintensity; B.c, arrowhead), and gadolinium enhancement from C7 level (B.d, arrow).
Follow-up MRI 18 months later reveals a longitudinally severe spinal cord atrophy from C7 to conus (A and B, arrows). Note the filiform aspect of the spinal cord (axial T2-weighted image; D, arrowhead), and the hypointensity in T2 (B), and T2 gradient echo-weighted (C) images suggestive of hemosiderin deposit.
Vanishing spinal cord after varicella-zoster virus myelitis
María Sepúlveda, Javier Almeida, Joan Berenguer, et al.
Neurol Neuroimmunol Neuroinflamm 2017;4;
DOI 10.1212/NXI.0000000000000364

This information is current as of June 5, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://nn.neurology.org/content/4/4/e364.full.html

References
This article cites 1 articles, 0 of which you can access for free at:
http://nn.neurology.org/content/4/4/e364.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Spinal Cord
http://nn.neurology.org/cgi/collection/all_spinal_cord
MRI
http://nn.neurology.org/cgi/collection/mri
Transverse myelitis
http://nn.neurology.org/cgi/collection/transverse_myelitis
Viral infections
http://nn.neurology.org/cgi/collection/viral_infections

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://nn.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://nn.neurology.org/misc/addir.xhtml#reprintsus