RT Journal Article SR Electronic T1 Covarying patterns of white matter lesions and cortical atrophy predict progression in early MS JF Neurology - Neuroimmunology Neuroinflammation JO Neurol Neuroimmunol Neuroinflamm FD Lippincott Williams & Wilkins SP e681 DO 10.1212/NXI.0000000000000681 VO 7 IS 3 A1 Muthuraman, Muthuraman A1 Fleischer, Vinzenz A1 Kroth, Julia A1 Ciolac, Dumitru A1 Radetz, Angela A1 Koirala, Nabin A1 Gonzalez-Escamilla, Gabriel A1 Wiendl, Heinz A1 Meuth, Sven G. A1 Zipp, Frauke A1 Groppa, Sergiu YR 2020 UL http://nn.neurology.org/content/7/3/e681.abstract AB Objective We applied longitudinal 3T MRI and advanced computational models in 2 independent cohorts of patients with early MS to investigate how white matter (WM) lesion distribution and cortical atrophy topographically interrelate and affect functional disability.Methods Clinical disability was measured using the Expanded Disability Status Scale Score at baseline and at 1-year follow-up in a cohort of 119 patients with early relapsing-remitting MS and in a replication cohort of 81 patients. Covarying patterns of cortical atrophy and baseline lesion distribution were extracted by parallel independent component analysis. Predictive power of covarying patterns for disability progression was tested by receiver operating characteristic analysis at the group level and support vector machine for individual patient outcome.Results In the study cohort, we identified 3 distinct distribution types of WM lesions (cerebellar, bihemispheric, and left lateralized) that were associated with characteristic cortical atrophy distributions. The cerebellar and left-lateralized patterns were reproducibly detected in the second cohort. Each of the patterns predicted to different extents, short-term disability progression, whereas the cerebellar pattern was associated with the highest risk of clinical worsening, predicting individual disability progression with an accuracy of 88% (study cohort) and 89% (replication cohort), respectively.Conclusion These findings highlight the role of distinct spatial distribution of cortical atrophy and WM lesions predicting disability. The cerebellar involvement is shown as a key determinant of rapid clinical deterioration.AUC=area under the curve; EDSS=Expanded Disability Status Scale; FLAIR=fluid-attenuated inversion recovery; FWHM=full width at half maximum; GM=gray matter; ICA=independent component analysis; LST=lesion segmentation toolbox; MNI=Montreal Neurological Institute; MP-RAGE=magnetization-prepared rapid gradient-echo; MSFC=MS Functional Composite; ROC=receiver operating characteristic; RRMS=relapsing-remitting MS; SVM=support vector machine; WM=white matter